Engineering Criticality Assessment (ECA)

ECA or Engineering Criticality Assessment is a Fracture mechanics based approach in that significance of cracks and crack-like features either in the weld (Lack of Fusion, Lack of Penetration, Slag inclusion, etc.) or in the parent metal (Lamination, Lamellar tearing) on the integrity of an oil and gas component is assessed. This approach is proved to be very cost-effective as it avoids unnecessary repairs.

Z-Subsea integrity team has been actively involved in the development of the ECA related codes/standards such as BS7910, DNV OS-F101 (Appendix A), SINTAP and FITNET and use of codes such as DNV RP-F108, API579-1/ASME FFS-1. That said we are confident that we are aware of the cutting edge developments on the relevant/international standards which could be easily pass on to our client in their projects.

At Z-Subsea, we have in-depth knowledge of using the ECA approach during the projects full life cycle (from the conceptual phase, Fabrication, Construction, Operations up to the end of asset life) and beyond (Life extension) under both static (Fracture) and cyclic loading (Fatigue). Engineering Criticality Assessment (ECA) of installations and operations in extreme conditions, i.e., strain-based installations (Reeling or installations in the deepwater), High Temperature and High Pressure (HP&HT) operations and exposure to the hostile environments such as sour-service (high level of H2S), are also  amongst Z-Subsea cutting edge expertise and in-depth knowledge on the subject.

The outcome of the ECAs would be in forms of tolerable defect sizes (acceptable flaw depth versus defect length) for a project full life cycle, indication of fatigue life of a welded/non-welded component and determination of the inspection intervals.