

API 579-1/ASME FFS-1 course content

DAY ONE

- 1 Overview and Opportunities for FFS documents
- 2 Introduction to API 579-1/ASME FFS-1
- **3 FFS Assessment Procedures**
 - 3.1 Applicability and limitations of the FFS assessment procedures
 - 3.2 Data requirements
 - 3.3 Acceptance Techniques and Acceptance criteria
 - 3.4 Remaining life evaluation
 - 3.5 Remediation
 - 3.6 In-service monitoring
 - 3.7 Documentation
 - 3.8 Example problems
- 4 Damage Mechanisms
 - 4.1 Introduction
 - 4.2 The need to identify damage mechanisms
 - 4.3 Assessing potential damage mechanisms
 - 4.4 Damage types
 - 4.5 Sources of information on damage types
 - 4.6 Inspection techniques for damage mechanics with focus on flaw characterization

- 4.7 Introduction to API571
- 4.8 Determining remaining life
- 4.9 Determining mitigation strategies
- 4.10 Determining monitoring strategies
- 5 API 579 Appendices
 - 5.1 General
 - 5.2 Overview of Appendices
 - 6 Assessment of Equipment for Brittle fracture
 - 6.1 Applicability and limitations of the FFS assessment procedures
 - 6.2 Data requirements
 - 6.3 Acceptance Techniques and Acceptance criteria
 - 6.4 Remaining life evaluation
 - 6.5 Remediation
 - 6.6 In-service monitoring
 - 6.7 Documentation
 - 6.8 Example problems

DAY TWO

7	Assessment	~£	Canaral	Matal	1 000
/	Assessment	OT	General	wetai	LOSS

- 7.1 Applicability and limitations of the FFS assessment procedures
- 7.2 Data requirements
- 7.3 Acceptance Techniques and Acceptance criteria
- 7.4 Remaining life evaluation
- 7.5 Remediation
- 7.6 In-service monitoring
- 7.7 Documentation
- 7.8 Example problems

8 Assessment of Localised Metal Loss

- 8.1 Applicability and limitations of the FFS assessment procedures
- 8.2 Data requirements
- 8.3 Acceptance Techniques and Acceptance criteria
- 8.4 Remaining life evaluation
- 8.5 Remediation
- 8.6 In-service monitoring
- 8.7 Documentation
- 8.8 Example problems

9 Assessment of Pitting Corrosion

- 9.1 Applicability and limitations of the FFS assessment procedures
- 9.2 Data requirements
- 9.3 Acceptance Techniques and Acceptance criteria
- 9.4 Remaining life evaluation
- 9.5 Remediation
- 9.6 In-service monitoring
- 9.7 Documentation
- 9.8 Example problems

10 Assessment of HIC, SOHIC and Hydrogen Blister Damage

- 10.1 Applicability and limitations of the FFS assessment procedures
- 10.2 Data requirements
- 10.3 Acceptance Techniques and Acceptance criteria
- 10.4 Remaining life evaluation
- 10.5 Remediation
- 10.6 In-service monitoring
- 10.7 Documentation
- 10.8 Example problems

11 Assessment of Weld Misalignment and Shell Distortions

- 11.1 Applicability and limitations of the FFS assessment procedures
- 11.2 Data requirements
- 11.3 Acceptance Techniques and Acceptance criteria
- 11.4 Remaining life evaluation
- 11.5 Remediation
- 11.6 In-service monitoring
- 11.7 Documentation
- 11.8 Example problems

DAY THREE

12	Assessment	of Cra	ck-like	Flaws
14	ASSESSIIICIIL	OI GIA	CN-LINE	I IAV

- 12.1 Applicability and limitations of the FFS assessment procedures
- 12.2 Data requirements
- 12.3 Acceptance Techniques and Acceptance criteria
- 12.4 Remaining life evaluation
- 12.5 Remediation
- 12.6 In-service monitoring
- 12.7 Documentation
- 12.8 Example problems

13 Assessment of Creep Damage and Remaining Life

- 13.1 Applicability and limitations of the FFS assessment procedures
- 13.2 Data requirements
- 13.3 Acceptance Techniques and Acceptance criteria
- 13.4 Remaining life evaluation
- 13.5 Remediation
- 13.6 In-service monitoring
- 13.7 Documentation
- 13.8 Example problems

14 Assessment of Fire Damage

- 14.1 Applicability and limitations of the FFS assessment procedures
- 14.2 Data requirements

14.3	Acceptance Techniques and Acceptance criteria
14.4	Remaining life evaluation
14.5	Remediation
14.6	In-service monitoring
14.7	Documentation
14.8	Example problems
Asses	ssment of Dents, Gouges and Dent-Gouge combinations
15.1	Applicability and limitations of the FFS assessment procedures
15.2	Data requirements
15.3	Acceptance Techniques and Acceptance criteria
15.4	Remaining life evaluation
15.5	Remediation
15.6	In-service monitoring
15.7	Documentation
15.8	Example problems
Asses	sment of Laminations
16.1	Applicability and limitations of the FFS assessment procedures
16.2	Data requirements
16.3	Acceptance Techniques and Acceptance criteria
16.4	Remaining life evaluation
16.5	Remediation
16.6	In-service monitoring
16.7	Documentation

16.8 Example problems

- 17 In-Service Margins/Validation
 - 17.1 Design margins for new equipment
 - 17.2 In-service margins for existing equipment
 - 17.3 Validation
- 18 Overview of remaining life assessment, remediation, and methods to extend the life of damaged equipment.

DAY FOUR

19	Introdu Intent)	iction to ASME PCC-2 standard (Scope, Organization, and
	19.1	Applicability and limitations of repair methods covered by ASME PCC-2
	19.2	Repair methods and techniques
	19.3	Welded Repairs

- 19.4 Butt-Welded Insert Plates in Pressure Components
- 19.5 Weld Overlay to Repair Internal Thinning
- 19.6 Welded Leak Box Repair
- 19.7 Full Encirclement Steel Reinforcing Sleeves for Piping
- 19.8 Fillet Welded Patches
- 19.9 Alternatives to Post weld Heat Treatment
- 19.10 In-Service Welding Onto Carbon Steel Pressure Components or Pipelines, Weld Build-up, Weld Overlay, and Clad
- 19.11 Restoration, Mechanical Repairs (Non-welding repairs)
- 19.12 Mechanical Clamp Repair, Inspection and Repair of Shell and Tube Heat Exchangers, Mechanical repairs, with sealant.
- 19.13 Non-metallic Composite Repair Systems
- 19.14 Examination and Testing, Pressure and Tightness Testing of Piping and equipment,
- 19.15 Non-destructive Examination in Lieu of Pressure Testing for Repairs and alterations
- 19.16 Documentation and Records of repairs
- 19.17 Real-world examples and case studies